

T
-

3

ADA050058

B4 b4 i Pt P4 Py em

-

—————————

.

‘000G FILE COPY.

jAD No.

wg-c-oasr/

DIRECT NUMERICAL SOLUTION OF LARGE SETS
OF SIMULTANEOUS EQUATIONS

H.A. Kamel & M.W. McCabe
University of Arizona
Aerospace and MechanicalJ
Engineering Department
Tucson, Arizona 85721

Jaruary 20, 1978
Technical Report No. 3

Approved for public release, distribution unlimited

t of the Navy
Office of Naval Research
Structural Mechanics (Code 474)
Arlington, Virginia 222%7

@ ”W?s-c,dsw

DIRECT NUMERICAL SOLUTION OF LARGE
@,) OF STMULTANEQUS EQUAIIQ@- §E1‘S

',,ua.-«-“'

@ G ey

Aerospace and Nbchanical

%]Sgle?r&izma 85721 [&f . R, 2

1"
Jarmary 20, 1978 C:{agé Jan 7Y/

Technical Report No. 3
Approved for public release, distribution unlimited

t of the Navy
Office of Naval Research
Structural Mechanics am (Code 474)
Arlington, Vizginia 22217

T T T

Sy

T

ke 2auha g WMT'W

DIRECT NUMERICAL SOLUTION OF LARGE SETS
OF SIMULTANEOUS EQUATIONS

H.A. KAMEL AND M.W. MCCABE
S Aerospace and Mechanical Engineering Department

™ University of Arizona, Tucson, AZ 85721, U.S.A.

N
Abstract -- The paper attempts to survey, classif§ and compare methods
availab: r the solution of simultaneous equations on a digital
computer. It is known that, for direct methods, the amount of central
processor time required to perform the solution varies little from one
method to the other. More interesting than the algorithm is the data
handling method. The basis for comparison here is core utilization and
the number of required I/0 operations. Low core utilization means
higher program capacity and increased generality, whereas a low 1/0

activity improves efficiency and reduces system residence time. One of

the interesting findings in a éomparative study of the demands on computer

resources is that the data handling method is indeed the deciding factor,
rather than the mathematical algorithm. !
In order to avoid too mathematical an apﬁioach, the paper recognizes
the origin of the equations in the mathematical modelling of physical
problems. A classification of such problems is attempted and its
implications with regard to the solution procedures are assessed whenever

possible. A number of parameters are suggested for use in program per-

formance measurements.

T,

L. __EVALUATION OF SOLUTTON METHODS

Numerical solutions of simultaneous equations may be performed with
(1] '

either direct or iterative methods. In some cases, hybrid methods,
combining an element of both, may be employed.[2’3] Iterative methods
have the advantages of a low storage requirement and possible fast con-

vergence in certain cases, but their rate of convergence is unpredict-

able. The paper concerns itself, therefore, primarily with direct methods.

Many misleading statements and conclusions can be found in the cur-
rent literature due to a lack of distinction between a basic mathematical
technique and its implementation on an electronic digital computer. Just
as an excellent mathematician may have his "tricks of the trade," so does
a good professional programmer have access to special knowledge result-
ing in efficient implementation of a basic mathematical algorithm. The
performance of a particular implementation is influenced not only by
the excellence of the programmer, but by the available system software
and hardware at a particular installation. The presence of a large core,
direct access (or index sequential) files, high speed backing storage,
efficient FORTRAN compiler and file management system, etc., has a great
impact on the capacity and performance of a program and will undoubtedly
influence the choice of the algorithm. In view of this, a classification
of data handling techniques and an evaluation of their demands on computer
resources are attempted. In comparing these algorithms, criterion are

selected that are system independent, as much as possible. The findings

are then applied to two particular installationms.

PO

AL st £ ot o i s i i S i

St

11, _DIRECT METHODS OF SOLUTION
It is customary to refer to a solution method (mathematical algorithm)
by the name of an originator to whom the method is commonly attributed
(Gauss, Cholesky, Crout, etc.). Instead of this, two main solution
strategies are defined, the triangularization methods (e.g., Gaussian
elimination) and factorization methods (e.g., Crout, Cholesky, Inverse

81y,

decomposition Although it can be shown that the factorization and

triangularization methods are closely related in a mathematical sense[l’s’Gl,
the computational steps and sequence of data retrieval, in a computer

program, are distiné¢tly different and therefore play an important part in
any comparison. It can be shown that the greatest difference relates to

B | the I/0 operations rather than the arithmetic effort required.

II.1 Trianqularization Method (Gaussian Elimination)

Consider the equation

.

EXYE (1)
where K is a square non-singular coefficient matrix, R is a right-
hand side and r is an unknown vector(s). A series of row transformations

are performed, resulting in an upper triangular coefficient matrix. The

process may be represented mathematically as
LK) = LB (2)
where L is a lower triangular matrix.

Once this form is achieved, the solution proceeds through a simple
| back-substitution operation. It is also possible to perform the tri-

angularization in reverse order, using an upper triangular matrix,

UK) r= (UR) (2a)

I o S NN a1 = N TP VAT, By 1o T T A 7

followed by a forward substitution.

I1.2 Factorization Method (Crout, Cholesky, Inverse decomposition)

In this method, the coefficient matrix is factorized (decomposed)

into a number of matrices. The most general case is given by

k=LdU : (3)

where L is a lower triangular matrix with unit diagonal elements, U is
an upper triangular matrix with unit diagonal elements and d is a diagonal
matrix. It is also possible to reverse the scheme by expressing the co-

efficient matrix as

K=UdL.] (3a)

Whether equations (3) or (3a) are utilized, the program proceeds to
compute L, d and U and store them. Using equation (3), equation (1) now

takes the form
LdUr=R. 4)

The solution to equation (4) is given by:

r=0 g, (5)

It 1is not necessary, or advisable, to form the inverse of any of.thue
matrices explicitly since matrix sparsity is thereby destroyed. One

proceeds to evaluate the following vectors directly, and in this order,

2.1 - _]:_,_-]! (58)

£ =dly (5b)
and finally -1

X" g Ipe (5¢)

In the Crout method, the matrix U is multiplied by d to form

b=

Ut=dU

R=LU*

Special cases arise. In the case of structural problems, for

example, K is a symmetric positive definite matrix. In this case,

L = o, ')

4 - And it is only necessary to compute and store one of the matrices L

E\. and U.

In the Cholesky decomposition, the square root of the diagonal

matrix d is obtained and multiplied by L so that |3

, k=1 ®)
e where
: 1._ - d-l’L (8a)

In both the Crout and Cholesky methods an attempt is made to

eliminate the matrix d from the formulation. In both cases the variation
on the basic factorization scheme is minor and causes additional problems.
Neither method results in an appreciable saving of storage space or

seriously affects the computing effort. Therefore, the original for-

mulation of equations (4) and (5) will be used for non-symmetric matrices.

In additon, equation (7) will be used for symmetric matrices.

11.3 General Remarks About Direct Methods

;, —'
: For both basic solution procedures, the triangularization and
: > factorization (decompcsition), one can safely state the following:
a. It is possible to solve for several right-hand sides simultaneously.
' b. No additional storage is required for the L, U and d matrices.
9 They can occupy the same storage which K occupied otiginally.
1 > c. By saving the triangular matrices (L K), d, L, and/or U, it is
possible to solve for new sets of right:-hand aides without t
—_

T

|
|

¥ B iaais 4

further triangularization or factorizat.uu.

d. Both methods may be combined with any of the data storage
schemes, to be described under IV. In particular, both methods,
and their derivatives, can be generalized to the hyper-row or
hyper-matrix schemes.

e. Both methods require the same computational effort. See, for
example, the operation count in ref. [4].

It 18, therefore, natural to conclude that the relaﬁive superiority
of one scheme over the other can only be determined, if at all, on the
basis of their demand on cqmputet resources -- mainly core space and I/0
operations. The choice becomes, therefore, one of the data handling

strategy.

L11. _IIERATIVE METHODS

Iterative methods are potentially useful in the solution of large
systems of equations. Although few programs utilize such methods, it
may be unwise to dismiss iterative methods altogether. Such methods
still hold certain advantages, such as low storage requirements, which
may be important in conjunction with large three dimensional solids
problems, where storage is of prime importance -- particularly if the
current tiend of increasingly faster central processors, coupled with a
relatively stagnant backing storage technology, continues. Although the
paper is primarily concerned with direct methods, we list the following

iterative approaches which are most prominent today:

a. Gauss-Seidel Method
b. Block Relaxation Methods [2,3]
c. Conjugate Gradient Method [7,8]

d. Dynamic Relaxation Method [9]

~

g——

| —

T

T "*".'v/ =

S

TR

e ———————ETTERE

1V, DATA HANDLING METHODS

Core storage is usually not sufficient to hold both the co-
efficient matrix and the right-hand side. Special data handling
techniques are utilized with two objectives in mind: low core
requirement and few I/0 operations. The main schemes are described
under this section. They are labelled using I for in core, R for
row, G for group or partition, S for submatrix. Except for IB, a two
letter designation stands for the disk storage unit (recoxrd), and the

computational wit (pivot), respectively, as described below.

IV.1 In-Core Banded Storage (IB)

Only useful in small size problems. In non-linear problems, where
problem size is often kept down out of necessity, and where one attempts
to avoid the use of mass storage devices, the scheme is still heavily

used.

IV.2 Banded Out-of-Core Stbragel,Rows (or Columns) Stored Individually (RR)

This scheme requires only enough core storage to accommodate two
individual rows of the matrix‘simultaneously. The solution is accomplished
via single row combinations. It has the disadvantage of excessive I/0

activity.

IV.3 Banded Out-of-Core Storage, by Row (or Column) Partitions (GR,GG)

In which the banded matrix is stored in row, or columm, partitionms.
Each partition contains a number of rows, or columns, and is read, or
written, with one I/O instruction. This method of operation may be

combined with row by row, or partition by partition, solution algorithms.[lol

T o e

IV.4 Sparse Representation |11‘12|

In this method, the sparaity of the matrix is taken into account
on an element, or element string, basis. Each element, or element string,
is accompanied by a header describing its size and position within the
matrix. An effort is made so that only "active" strings are present in
core at any stage of the computation. It is difficultAto evalute such an
approach, due to its problem dependency. We feel, however, that the
method can essentially be described in terms of one of the other schemes,
with variable band-width. The problems chosen as a basis for comparison
in this paper do not reflect this property, and we can therefore exclude

sparse representation from our comparison.

IV.5 Hypermatrix Method (sG) [13,14,15,16,17]

The coefficient matrix, as well as the right-hand side, are par-
titioned into compatible blocks called submatrices. Each submatrix is
treated as a record to be moved in or out of core with a single I/0
operation, The individual submatrices are not stored, or operated upon,
i1f zero. Therefore, a number of pointers are utilized to indicate the
existence, or non-existence, of the submatrices, and their disk addresses.
These pointers may be, in themselves, regarded as a matrix. For large
problems, tpis matrix again presents a problem and must be handled using
one of the schemes described under this section. It is possible to treat

it as a banded matrix, a sparsely populated matrix[12’14] or as a hyper-
[15]

matrix

' —

) —

— b

———

IV.6 Miscellaneous Methods

The above cases have been chosen as well-defined examples of data
handling methods. Instances may exist where programs use variations on
the above methods that make them perhaps more efficient in certain
situations, but also difficult to classify. As an example, the Wav.

Front technique[lsl

utilizes the sparse method of representation coupled
with a sophisticated disk handling scheme. The method combines a banded
approach with a form of band-width optimization performed simultaneously

with the coefficient matrix assembly.

Buffering may sometimes be useful, where an I/0 buffer is created,
which contains a number of records (row, columms or hypermatrices). If
an I/0 operation is initiated, the buffer directory is first consulted
before an I/0 access is attempted. Exchanges between the buffer and the
disk are governed by a suitable paging algorithm. This technique increases
the I/0 overhead but may be of great benéfit, particularly if an additional
amount of fast secondary core (e.g. Extended Core) is available. A
similar situation arises with some mini-computers in which a FORTRAN pro-
gram may only access a limited amount of core during computation, but

may use addresses beyond its area for block data transfers.

V. CLASSIFICATION OF MATHEMATICAL MODELS

The type of mathematical model employed has a direct impact on the
correct choice of solution algorithm. Ideally, general purpose programs
should employ the most efficient all round algorithm possible. Many
special purpose programs, however, employ the simplest possible algorithm
to solve the class of problems they are designed for. We believe,

therefore, that the classification attempted here is of value both to

i It S i e e e S A il

¥ ey

[special program designers, and as a measure of performance of algorithms

employed in large general purpose programs. For the purpose of our study,

! we choose some typical grids employed in a discrete mathematical model,

as typified by finite element and finite difference approaches. Figure 1
shows sketches of the four models chosen. In each case, the number of

grid nodes in any one direction is given by N, and the number of degrees
of freedom by £. In a heat transfer problem, for example, f = 1. It is
equal to 3 in elastic solids problems and 6 in shell problems. The four

models chosen are:

V.l One-Dimensional Grids (E1S1)

This is the simplest case, admittedly trivial, utilized in the
solution of a one-dimensional problem. Models of this nature are best

handled in core using a banded storage scheme.

E V.2 Two-Dimensional Grids (E2S2)

The demands on computer resources are moderate. A banded approach

) GRS WUMUR UL M WRINN, SSE R W m——— —

f is effective. In-core handling is possible for small problems. Out~of-

g core banded schemes (GR,GG), such as in the SAP programtlo] perform well ‘L‘

in this situation. ;:
. -
: V.3 Two-Dimensional Grids in Three-Dimensional Space (E253) f
{: Such models are typical of shell structures, and are of great -4
: practical importance. The chosen example grid is sufficiently repre- t
:f sentative., In practice, such grids may be of a highly complex nature. ‘f
:§ The demands on computer resources are greatly increased and, as will 'é
3{ be shown later, more sophisticated schemes such as those employed in large .i

scale programs [11, 13, 14, 15, 16, 17] are imperative. The complexity

of node interaction dictates a sophisticated method for the handling of .l

-10- 1

Element of Length

Element of Area

oz

EISI Grid

E2S2 Grid

it

jansa
1

l 2 S N
E2S3 Grid N
2 =
Surface Element N'
: :
2
|
2 3
N
E3S3 Grid
Volume Element N
@ : Feoo
. i
N o ol
3/[* ——
' 2 3 b ey D N'

Figure 1.

Classification of Model Grids

oo

matrix sparsity.

V.4 Solid Continuum Problem (E3S3)

This is the most demanding of all models. The sheer amount of
storage and computation required places most crucial demands on computing
systems. Not only are advanced data handling methods required, but also

new methods and techniques should be constantly investigated. Iterative

(7,8] (2]

solution methods and hybrid approaches are possible candidates.

VI. PROBLEM SIZE LIMITATION DUE TO AVAILABLE SPACE

In order to evaluate the effect of computer resources on program B
capacity, storage space 1s first considered. Table llshows the limitations
for a number of model types and different numbers of degrees of freedom —
if the solﬁtion is conducted in core, with 40,000 words available core
storage. Both spatsé representation, used in conjunction with an iterative
solution method requiring no factorization of decomposition, and direct
methods are considered. No account is taken of the storage overhead

necessary to organize the data.

It is assumed that the total storage requirement remains practically

the same regardless of the data handling method used.

Table 2 presents similar figures for an out-of-core solution, assum-

ing one million words of disk space are reserved for the stiffness matrix.

In both cases, the high demand on computer storage is evident --
particularly in the case of the E253 models. One may notice, for
example, that with an expansion of storage allocation from 40,000 to
1,000,00Q words, the maxiuum E3S3 grid size, for a heat transfer problem,
increases only from a (7x7x7) to a (14x14x14); i.e. double the grid re-

solution for a 25 fold increase in storage space.

-l2-

The following is a key to the information contained in Tables 1

and 2:

a
1]

(subscript) refers to direct method,
i = (subscript) refers to iterative method,

Nd’Ni = number of nodes per dimension (grid density),

f = number of degrees of freedom/node,

Ud’Ui = number of unknowns,

b = maximum half-band-width,

Sd,S1 = gtorage requirement for direct and iterative solutions,

Nd,Ni = program capacity for direct and iterative solutions, in
terms of grid density resolution, and

o = matrix sparsity factor (see below).

VL. GENERALIZATION OF THE BAND-WIDTH CONCEPT

The concept of the "band-width", B, and half-band-width, b, have
been extremely useful in program design. In section VI, the concept was
used as a basis for evaluating the relationship between storage space
available and maximum problem size for a chosen set of highly regular
grids, representative of typical classes of physical problems. Schemes
based on sparse representation, however, such as described under IV.4
or the block-oriented hypermatrix scheme described under IV.5, do not
operate on this principle. Such schemes take into consideration only those
elements different from zero, in both storage and computation. It is
necessary to define, in more precise terms, a new set of parameters to
describe the sparsity of an arbitrary matrix. It is hoped that these
new parameters will play a role in measuring the performance of solution

schemes, as well as in the prediction of solution times, and node and

ke

e i b s i iy i ey S ey Ml e I o B R 3 1 1 ‘ — ﬂ

-
-

‘POZYTFIn ST owoyos 9sawds ® IT ‘(I+N)JIZ 03 STY3 2onpai1 o3 arqyssod sy IIx 4

SpaoM 000°0% = XFIIBK IUIFOIFJJI20) 103 20uvdg 9210) STQETFEAY

4
UOFINTOS 210) UL 103 UOFIBITWFT 92§ WATq0lg °T ATAVL §

-
849 9 SLE < ¢ €N O
eNz3Iv1 (TN N) e Nz 3 T (THNzN) 3| 391 eN-3 £S-cd
LT Wl z16 8 1 ¢
1 0 .
. . ge : C ca-mngsze | 2 (-0Ng3zE N/Y (-m3 | 38 [(-m)nsy| es-za
09LYy 113 0%y 1 1 w0
€252 62 5L9 3 ¢ 2N
Nz 3S (THN) zNz 3 (T+N) 3 3S zN-3 ¢s-7a
1261 68 6801 €€ 1 (tH)z
9999 222t 9999 ez | ¢
Ng3T. N;32 N/Y 32 3z Ne3 1s-12
000°‘0Z | 000°‘0Z | 000°0Z | 000°0Z | T
L N Ph PN 3 n°q='s nq="s 0/qz=0 q °q n 13PoK

=,

8PIOM 401 = 2%eds }STQ ATQBTFEAY

UOFINTOS 3109 JO INQ 103 SUOTIBIFW]TT I2FS We(qoad °Z FATAVI
000°%2 0z 000€ o1 e
gNz3Iv1 (ZHN+zN) g N2 3 (=1 (THHZN) 3 vt ¢N-3 | €s-€2
126°89 1% GLEE Sl
290°1% 6S 0252 SI
2 (1-N)Nz3T€ 2 (1I-N)Nz3z€ N/Y (1-N)38 3 (1-N)N3v] €s-za
: 809°%2Z1 Lt 896€ 4%
€09°99 691 LT99 LY N
ZNz3S (THN) gNz 3 (¢+N)3 IS N3 zs-za
608°661 LYYy 1086 66 (tH)z
699°991 |SSS°SS 699°991] 6SS°SS
Nz32 Nz3¢ N/Y 32 3T N-3 1s-13
000°00S Jooo‘oos | 000°00S|000°00S
: X ¥ Py Py Tg Pg -0 q °q n T2POK

.

spectively, after element propagation due to a direct 1

solution. J

The reader should notice that l
B =b +c =1 9)

o, o, o l
and Bi - bi +c i 1 (9a)

element renumbering, for the purpose of solution cost minimization.

Wl __Active Local Bandwidth

This is defined as the total number of non-zero elements in a
particular row or column. It is necessary to distinguish between the
active local bandwidth before and after decomposition (or factorization).
The former, which is smaller, is important in iterative schemes, while
the latter determines the computational effort in a direct scheme. Sym-
metric coefficient matrices will now be considered, although a general-
ization to non-symmetric matrices is straightforward. We introduce the

following symbols:
B Initial active local bandwidth for row (or columm) 1.
i Initial active local half bandwidth for row 1. b

is a count of the non-zero entries horizontally °
to the right, starting with the diagonal elements.

c Initial active local half bandwidth for column. i. <,
%y is measured vertically up, starting with the i
diagonal.
Bi Active local bandwidth for row (column) i. It is equivalent
to Bo for the coefficient matrix after factorization or
i :
decomposition. L

bi & ¢ 1 Active local half bandwidths for row and column i, re-

v ix Profile

This is defined as an array containing all local bandwidth values.
It describes the matrix sparsity in a more accurate fashion than the

usual (maximum) bandwidth concept.

o ol S e Tlsrdivatin NS, SINEICEIE R B
-0 0102 Oi Ou

is the initial matrix profile, and
g-{nlnz......ni......nu} (11)

is the (final) matrix profile, after element propagation.

Similarly for initial row and column (half) bandwidth profiles we

have
LN v AR, TSNS R | (12)
-0 01 02 Oi OU

and e ™ fe. € ...k cPNNes) (13)
-0 01 02 Oi OU

and for final profiles we define

B 4B By oo oby s oo by) (14)
and c= {c1c2"'c1"'°U} (15)

VII.3 Generalized Matrix Parameters

The following parameters are introduced. They represent useful
scalar measures of sparse matrix properties utilized to measure space
and computational requirements. Again only symmetric matrices are con-

sidered, although the generalization to non-symmetric matrices is straight-

forward .

VII.3.1 Mean Bandwidth

The mean bandwidth of a matrix is defined as:

«]l7=

T v

Wﬁvr ——TE—

T

wrﬁvn

AR
b= (Z bi)/U.
£t (16)

This parameter is utilized primarily to measure storage requirements.

VII.3.2 Matrix Sparsity Factor

o = 2b/(U+1) = 2b/U (17)

o varies from -TE%IS. for a diagonal matrix to 1 for a fully populated

matrix.

VII.3.3 Computational Bandwidth

The number of floating point multiplications and additions involved
in the triangularization of a matrix is approximately equal to b2U/2, for
a matrix with a constant local bandwidth. This leads to a bandwidth
parameter, called the computational half bandwidth, which may be used for
solution time estimates.

% i} 3
b= [Z b/U] (18)
i=1

VIII. MEASUREMENT OF PROGRAM PERFORMANCE

Solution routines, based on a basic mathematical algorithm, are
difficult to compare. The following performance measurement parameters

are suggested to help comparison and evaluations.

VLIl Storage Efficiency Parameters (E_)

The minimum storage required for a coefficient matrix is given by:

snin =b U, (19)

However, due to program organization, additional space may be
needed to structure the data. If the total amount of space required to

store and manage the coefficient matrix is given by S, the storage

-18~

P - 4 . T S ——

oy ‘—varw TT——— v

Y

"

S e ol

Wv), -

efficiency of the program is defined by:

E-f—&n.
s S

VIII.2 Computational Efficiency (Ec)

The total amount of operations needed by the Gaussian elimination is
approximately equal to

U bi
Q= (—5— +2B,p) (20)
1=1

where p is the number of right-hand sides. However, considerable over-
head is usually associated with data management. One way to measure
efficiency is to compare the central processor time, T, taken by the
program to solve the equations with the approximate time for the Gaussian

elimination TG’ defined as

TG = QG (tM + tA) (21)
where tM and tA are the cp times required to perform a floating point

multiplication and an addition, respectively, on the given computer. The

program computation efficiency, Ec' is defined as

Q. (tM + tA)
T

(22)
c

IX. COMPUTER RESOURCE REQUIREMENTS

A solution scheme has certain demands on the computer. In measuring

the total burden on the system one has to consider the utilization of all

its resources. In detail they are:

a. Central processor time to perform the necessary computations.

Overhead is also present due to data management functions that
the program has to perform.

b. Core space required to store program and data. In an out-of-core

-19~

el

ST S

= b

i

solution, a part of this space is used as a dynamic working
space containing, at any one time, only a fraction of the data
required for the solution of the problem. Core space is an
important and limited resource. This fact is reflected in most
charge algorithms, which use the amount of core utilized by
a program as weighting factor in assessing system charges.

c¢. Input/Output (1/0) time. Ignoring hard to measure factors such
as system I/0 buffering and virtual memory machine operation,
each explicit request by the program to the system to either
read or write a block of data from an I/0 device, typically a
disk, constitutes a demand on system resources. The system I/0
charges are based on both the initial disk access (es) and the
amount of data transferred. Both elements will be used as
criterion in evaluating the I/0 requirements of a particular
algorithm. It is interesting to note that in large computer sys-
tems I1/0 operations require extensive amounts of associated CP.

d. Disk Space Requirements. Finally, a certain amount of disk
space is required to store primary problem data as well as
organizational data used to manage it. Disk require-
ments may or may not be a factor in assessing computer rum

charges. If the data is retained on disk permanent files after
job completion, disk storage is charged.

IX.1 Comparing Resource Requirements for Different Solution Schemes

In order to determine the suitability of the various schemes for
the solution of typical model types, we have to assess the total effect
due to all four factors listed above. Studies by the authors and others
(see for example [9]), show that central processor time utilized in the
basic solution steps is more or less invariable -- regardless of the
mathematical tool and data handling scheme used. It can be also shown
that disk space requirement is practically constant. It follows that the
two most important factors are those of core storage and the I/0 time.
The purpose of this section is to study the amount of both resources
and their dependence on the model type and the data handling scheme. Only
the fundamental data schemes will be considered. The following gives a
brief description of each method. Each scheme, except for IB, is designated

by a two letter code. The first denotes the storage unit which may be a

<20~

|

[JO e S s [S S— N w—

k.

Wv?:m._;.._. it i e i

row (R),
the solut

. by group.

The

a group of rows (G) or a sub-matrix (S). The second denotes

ion (pivoting) unit. The method may solve row by row or group

In-core banded solution (IB).

Out-of-core banded solution (RR), based on active bands. Each
single row is stored as an independent record and may be read
or written with a single I/0 instruction. Pivoting is by rows.

OQut-of-core banded solution. Rows stored in blocks. Solution
proceeds row by row (GR). For a particular problem, the more
rows there are in a group, the more core is needed and the less
the number of I/0 operations. In balancing the two factors,
program performance may be optimized as shown in section VIII.

Out-of-core banded solution. Rows stored in blocks. Pivoting
is by groups (GG). This method is the most economical in I/O
operations (see Table 3), but requires excessive core storage
for large problems.,

OQut-of-core hypermatrix solution (SG) in which the grouping of
unknowns is done on both rows and columns in a compatible manner.
The coefficient matrix is divided into sub-matrices. Each sub-
matrix is read into core or written on disk with one I/0
instruction. This method is the most economical in core storage
utilization for large problems.

core storage requirement for the hypermatrix is that sufficient

to hold four or five sub-matrices, as well as pointers to a number of

related sub-matrices. In the simplest possible of schemes the full

pointer matrix is stored in core. This approach, however, severely.limits

problem size. In order to reduce the amount of pointer storage, any of

utilized.

1)
(11)

(111)

the approaches applied to the coefficient matrix itself may again be

In particular, the following possibilities exist:

Pointer matrix stored in core, as a full matrix (SG-IF).
Pointer matrix stored in core, as a banded (sparse) matrix (SG-IB).

Pointer matrix stored out of core, as a banded matrix, only the
relevant rows are held in core (SG-0OB). We will only consider

the case where each record stores the addresses to a row of sub-
matrices, in a sparse format. All active address rows are pre-

a2l

Lok ety S

i

sent in core.

(iv) Pointer matrix stored out of core, as a hypermatrix (SG-H).

The SG-OB method for storage of pointer matrix rows will be considered
in assessing core storage. It will be assumed that the additional 1/0
operations to handle pointers have a negligible effect. It is also assumed
that, for the hypermatrix scheme, the right-hand side will be stored in-
dependently of the coefficient matrix, in compatible blocks. It is possible,
therefore, to solve for many right-hand sides simultaneously. If the
number of right-hand sides exceeds the number of rows allowable in a
partition, the right-hand side matrix can be partitioned column-wise alson.

This case will not be considered here.

IX.2 Comparison of Computer Resource Requirements

Table 3 shows a comparison between the various solution algorithm/
data handling combinations and their core and I/0 requirements. A banded
matrix is assumed. In interpreting the given data, however, ome must
realize that a well written sparse scheme will essentially provide the
same results, with the active band width taking the place of the maxi-
mum band width. Each method is designated with the letter identifier
used in the last section (IB, RR, GR, GG, SG). In addition, the letter
T will denote the triangularization (Gaussian Elimination) scheme and

the letter F the factorization (Cholesky, Crout, etc.).

In the banded, row oriented solution schemes, it is assumed that
the right-hand side(s) are stored with the corresponding rows. In the
hypermatrix scheme the right-hand sides are stored in separate blocks.
The following notation is employed:

r = No. of rows in a block, or submatrix size.

22-

BER L

T T

s = No. of non-zero submatrices in a hyperrow = b/r

G = Total no. of partitions = U/r.

Data Handling Method Core Requirement Number of 1/0 Calls Record Size
IB-T -
IB-F Ub 0
RR-T 2b 4bU b
RR-F 2b 5bU b
GR-T b(r+l) 4sU br
GR-F b(r+l) 5sU br
GG-T 2br 4sG br
GG-F 2br 5sG br
SG-T 4r? + g2 -(22-[352 + 13s - 8] r?
SG-F 52t + o° g [3s?2 + 11s - 6] =

TABLE 3. Comparison of Core Requirements and 1/0
Operations for Data Handling Schemes

IX.3 Examples

Figures 2, 3 and 4 describe program requirements during the
solution of a two-dimensional model (E2S2) with two degrees of freedom
per node. In solution schemes based on row and/or column grouping,
blocks of 30 rows each are assumed. Fig. 2 shows core requirements
for the various methods as a function of problem size. The group
storage, group reduction scheme, GG, shows an advantage over the
hypermatrix scheme, for models up to N=28 (U=1600). Figures 3 and 4
shows the number of 1/0 calls, and demonstrates definite superiority
of GG and SG over the GR and RR schemes. Figure 4 shows a slight

advantage for the SG over the GG method.

23

gt 0T PG aDs SRt PR ALY

E2S2 f=2 r=30
: 4500 3
, 4000
3500
it & 3000 |
3 @ 2500 |
‘ = {3
W 2000}~ GR-F, GR-T 1
¥ E 1
“ |
i .
H = :
RR-F, RR-T
S B e ———. - 1 I s
R’ 4 8 12 16 20 24 28 32 36 “B
3 N
Figure 2. Core Requirement for a 2-D Model, as a Function of Problem Size 1]
+ 5N

B
24~ L
. 4

E2S2 f=2 r=30

I . I i | | 1 | | |
200 +~
180 [~
160 - RR-F
190 -
‘ RR-T
! 120 -
I
Q so} GR-F
—
60 -
40 :
GR-T
20 o
GG-F, GG-T
4 8 12 16 20 24 28 32 36
N
Figure 3. 1I/0 Operation for a 2-D Problem as a Function of

Problem Size

—

1/0 CALLS

| | l | |
4 8 12 16 20 24 28 32 36

N

Figure 4. comparison of I/0 Times (only GG, SG) for an E2S2 Problem

26~

Figures 5, 6, and 7 show the core and I/0 requirements for a two-
dimensional problem with 3200 unknowns and a half bandwidth of 84 as a
function of partition size. As seen from figure 4, the hypermatrix
scheme uses somewhat less core than GG for partition sizes of up to 35
or 40. GG and SG require less I/O than GR throughout, with SG again

holding a defiunite edge.

It appears, therefore, from figures 2 to 7 that both the GG and SG

schemes are superior in handling ¢f two-dimensional problems.

Moving to shell-type problems (E2S3), figure 8 illustrates core
requirements as a function of partition size. It is quite apparent that,
for large bandwidth problems, the hypermatrix scheme requires substantially
less core. From an I/0 point of view (fig. 9), GG is again inferior to

SG.

The same conclusions are valid for solids problems, as illustrated

by figures 10 and 11.

X. CHOICE OF OPTIMUM PARTITON SIZES

In solution algoritims involving matrix partitioning in one

i ‘ direction (GR-T, GR-F, GG-T, GG-F) or in both directions (SG-T and SG-F),
large block sizes result in efficient disk operation at the expense of
core space. The optimum partition size depends on the hardware avail-
able and the charging algoritim utilized by the computer center. In
order to illustrate how one may optimize the size of the partition for a
. particular system, two cases are considered. One case represents a

typical computer center environment where central processor time, I/O]

time and core requirements are all taken into account in the charge

algorithm. The other case is that of a mini-computer in which residence

27~

TR SOATA A WIS AN

16K

14K

12K

I0K

8K

6K

CORE REQUIREMENTS

aK

2K

| 1 | | A 1 1 |
5 20 25 30 35 40 45 650 55
r

Figure 5. Core Requirement for an E2S2 Model as a Function of Partition Size - ‘
(U=3200, b+84) ’

-28-

I/0 CALLS

Figure 6.

E2S2 F=2 N=40

| |]] |] | 1) |

i e _GR-F
108 =
84 |- -
72} -
60 -
as|- d
36| i
24}~ -
|/ 66-F, G6-T

S ;

lL—M
5 20 25 30 35 40 45 50 55
r

Y

No. of I/0 Calls for an E2S2 Problem as a Function of Partition Size
(U=3200, b=84)

-29-

e e

I/0 CALLS
M WP N N ®©

Figure 7.

E2S2 f=2 N=40

A I | L | | g ¥ |

10

1/0 Calls for Group Reduction Schemes (GG,SG)

(U=3200, b=84)

= i i

E2S3 f=6 N=20

I8OK -

160K |-

120K |-

IOOK -

80K -

60K -

CORE REQUIREMETS

20K

| | 1 l I I I I |

GG-F, GG-T,

GR-F, GR-T

SG-E

SG-T i

| | =

Figure 8.

1 |t (R |
0 20 30 40 S0 60 70 80 90 100
PR |

Core Requirements as a Function of Partition Size
for an E2S3 Model (U=9120, b=912)

E2S3 f=6 N=28

I/0 CALLS

GG-T
SG-T, SG-F

PR

|
10 20 30 40 SO0 60 70 80 90 100
r ;

TR

Figure 9. 1/0 chuitlninco as.a Function of Partition Size for an E2S3 Model

e

32~

. E3S3 f=3 N=I5
ISOK

135K

120K

105K

90K

75K

60K

CORE REQUIREMENTS

Figure 10 Core Requirements for a Solids Problem (U=10125, b=726)

b i e i i\

E3S3 F=3 N=I5 8

:\ ; 8250 T T T | | T T | ke

‘ 7500 =
‘{ 6750 - ~
6000 - .

'; 5250 -
" 4500 o i3

-

g 3750 - -
8 3000 ~ |

. 2250 -
1500 o B

SG-F, SG-T

750 . . - g

] 1 1 1 $
0 15 20 25 30 35 40 45 50
. ¢ ;

Figure 11. 1I/0 Requirements for a Solids Problem (U=10125, b=726) |

time and limited core are the only considerationms.

X.l Computer Center Environment

A typical charge algorithm in a computer center environment is given

by the following formula**:

Cost = R *(a C+ B P+ y S *L)

where,
R =

C=

S =

L=

System cost/hour

Central processor time, in hours

-Peripheral processor (I/0) time in hours. It is defined as

the total time the program occupies an I/0 channel, and is
a function of both the number of disk accesses and amount of
words transferred.

Core storage, in words

Larger of C and P.

Typical values for the constants are

R = $500

a = 0.6

B = 0.15

y = 1.63 x 107
Furthermore, P is computed from

P= P, W+ Py A

where

W = the number of words transferred,
and

A = number of accesses.

**Bas:d on the University of Arizona Computer Center's CDC 6400
system

=35~

For the installation under consideration, the constants are given by

p, = 111 x 10" hours/word

P, " 1.04 x 10'6 hours/access.

Assuming the program has a computational efficiency of Ec, the central
processor time is given by:
. Gglea ey (Gt E) m2

E E ¢ 2
c c

+ 4bp).

c

The peripheral processor (I/0) time for the various methods is given by

Table 3. M can be put in the form

M= us + MP + MD
where
Ms is system memory requirement
MP is the user program requirement, excluding data,

and

MD is the data requirement, given in Table 3 for the different
schemes.

Case Study 1

Let us examine an E2-S3 model with

N = 20
and

f=6

U = 4f N(N-1) = 9120
and

b = 8£(N-1) = 912,

Let us assume 5 loading cases. Furthermore, for a CDC 6400,

=-36-

'
B e

EE e

t = 57 x 10"7 sec.
m

-7
tA =11 x 10 sec.

We assume that, for a typical program,

E = 0.8
c

also

Ms = 5000 words

MP = 12000 words.

i Figure 12 shows the computed cost for the given problem, on the
chosen installation using both the GG and SG schemes. It is interesting
to note the sharp minimum exhibited by the GG method at about r = 35 to

- 40, due to the central processor time becoming predominant, coupled with
the high core requirements. One notes further that the required core

reaches 64K at r = 26 and 131K for r = 62, On the other hand, the

‘ hypermatrix scheme (SG) exhibits a flat minimum extending from r = 20

——

to r = 40. The minimum cost for the SG is approximate-

— ly $5,500, compared to $10,300 for GG. These facts show not only the
clear superiority of the hypermatrix scheme for complex shell problems,
but, assuming the charge algorithm is reasonable also the unsuitability

of the computer installation for handling problems of this type and

| magnitude.
5 XI. MINI-COMPUTER ENVIRONMENT
i & In a mini-computer environment, the cost is a function of the
! residence time rather than system time. A typical cost formula** will

*%*Based on a PDP-15 computer, 32K of core, 18 bit words.

E2S3 f=6 N=20

| I { l

5 20 26 30 35 40 45 50 55
r

Figure 12. Effect of Partition Size on Solution Costs for
Row BL (GG) and the Hypermatrix Scheme (SG)
(U=9120, 12)

o vt

S s g

e

v

be of the form:
Cost = R *(C + B P).

Typical values are
R = $15.00/hour
and

8 = 8.333 E-6 hours/call

E (2
c

C= + Abp)

where, for a mini-computer without floating point processor

tA = 5,556 x 10_8 hours

and

e = 5.833 x 107" hours.
With a floating point processor,

t = 4.167E-9

m

e 2.778E-9

P = No. of I/O calls
The number of rows per group is not determined by the charge algorithm,
but rather by the availability of core. Assuming a core of 32K 18 bit
words, and assuming that the system occupies 6K words, and the program
5K, then a total of 21K is available for data. Assuming extended accuracy
(3 18 bit words per floating point number) then, for GG,

21000 = 2br x 3 = 6br.

30-

s e e O TR ey AT 8

XI.1l ase udie

The mini-computer cost algorithm is applied to the same complex
shell problem used previously, with 9120 degrees of freedom and a half
bandwidth of 912, (see figures 13 and 14). Since the amount of core
available is limited to 32K of 18 bit words, the curves are discontinued
when this limit is reached. It is obvious that the cost is reasonable
if a floating point processor is available -- $600 for SG and $1100 for
GR. The running times, however, are 40 and 70 hours, respectively! It
would appear that improvement of mini-computer speeds is required before

problems of this magnitude can be tackled in one computation.

XII. CONCLUSION
The paper establishes a systematic approach to the comparison of
basic solution techniques and data handling strategies. New parameters
are introduced, which may be used to describe sparsely populated matrices,
and estimate times and costs of solving the equations, in advance of the
computation. It is demonstated how one can optimize run costs for a
particular solution algorithm, a'particular problem and a particular

installation. From the results it appears that both a partitioned banded

approach and the hypermatrix scheme are suitable for the solution of medium

size problems with a narrow active bandwidth. For large shell and solids

problems, the hypermatrix scheme seems to be more efficient. Mini-computers

compare favorably with large systems in running costs, but may require un-

acceptable running times for large problems.

~40-

E
]
3
E

E2S3 f=6 N=20

1 | 1 1} | 1 1 1 I
18000 =4
16000 =
14000 RR-F -
RR-T
12000F 0
10000 = -
-
2 ﬁ":\- SG-F, SG-T
8000} =
Core Limit —7
6(X3C>r- i
4000 i
2000 }- —
| | it i

|]] | L.
O IS5 20 25 30 3B 40 45 50
r

Figure 13. Cost of Run for a Complex Shell Problem (U=9120, b=912)
On a Mini-Computer Without a Floating Point Processor

COST

E2S3 f=6 N=20

1200 T T Ak I T T T g
1100 -
[000], 2 -
900 5.
800H -
700} -
600 RR-F —
500\ RR-T -
400t ud
300 —
200 Core Limit . =

100 —§ SG-F, Sm -

|]] 1 | 1 |]

|
O 15 20 25 30 35 40 45 50
r

Figure 14. Cost of Run for a Complex Shell Prohlem (U=9120,
b=912), For a Mini-Computer with a Floating
Processor

“42-

AT M ATV T B N S T Sy,

L

gase)

i

b Ul ST AN oS s A A s S

ACKNOWLEDGMENT

The research has been supported by the Office of Naval Research
under contract no. NOOOI4=67=A=0709-0016—and the American Bureau of
Shipping.

The manuscript was typed by Ms Juanita Alvarez and drawings by
Lyn Davis.

This paper is dedicated to J.H. Argyris on the occasion of his
65th birthday.

R —
¥

10.

11.

12

13

REFERENCES

Wilkinson, J.H., The Algebraic ziganvalue Problem, Oxford University
Press, Oxford, (1965)

Rashid, Y.R., High Speed Computing of Elastic Structures, Vol. 1 & 2,
Proc. of the symposium of International Union of Theoretical and
Applied Mechanics, (Aug. 1970).

Kamel, H.A., Liu, D., White, E.I., The Computer in Ship Structure
Design, paper presented at the ONR International Symposium on
Numerical and Computer Methods in Structural Mechanics, University
of Illinois, Champaign, Illinois, (Sept. 8-10, 1971).

Phansalkar, S.R., Solution of Large Systems of Linear Simultaneous
Equations by Inverse Decomposition, Computers and Structures,Vol. 5,
Nos. 2/3, pp. 131-144, (June 1975).

Schwarz, R.H., Rutishauser, H. & Stiefel, E., Numerical Analysis of

Symmetric Matrices, Prentice Hall Series in Automatic Computation,
1973).

Stiefel, E.L., An Introduction to Numerical Mathematics, Academic
Press Inc., (1963).

Hestenes, M.R. and Stiefel, E., Method of Conjugate Gradients for
Solving Linear Systems, Journal of Research of the National Bureau
of Standards, Vol. 49, No. 6, pp. 409-436, (1952).

Fried, 1., A Gradient Computational Procedure for the Solution of
Large Problems Arising from the Finite Element Discretization Method,
International Journal for Numerical Methods in Engineering, Vol. 2,
No. &4, pp. 477-494, (197¢;.

Cassell, A.C. and Hobbs, R.E., Dynamic Relaxation in High Speed
Computing of Elastic Structures, Proc. of the Symposium of Inter-
national Union of Theoretical and Applied Mechanics, (Aug. 1970).

Wilson, E.L., SAP -- A General Structural Analysis Program for
Linear Systems, paper presented at the 2nd U.S.-Japan Seminar on
Matrix Methods of Structural Analysis and Design, (Aug. 1%.2).

McCormick, C.W., The NASTRAN Program for Structural Analysis, paper
presented at the 2nd U.S.-Japan Seminar on Matrix Methods of
Structural Analysis and Design, (Aug. 1972).

Kamel, H.A., Lamber, R.L., Solution of Structural Eigenvalue Problems
Using Sparsely Populated Matrices, paper presented at a conference on
Computer Oriented Analysis of Shell Structures, Palo Alto Research
Laboratory, Palo Alto, California, (Aug. 10-14, 1970).

Argyris, J.H., Kamel, H.A., et. al., ASKA an Automatic System for
Kinematic Analysis, Programmet s Manual, (Oct, 1965) .

44~

|

el i

e I S i

14,

15.

16.

17.

18.

19.

REFERENCES (cont.)

Kamel, H.A., DAISY User's Manual, Internal Report, (May 1968).

Kamel, H.A., McCabe, M.W., The GIFTS System, paper presented to the
International Symposium on Structural Mechanics Software, University
of Maryland, College Park, Maryland, (June 4-6, 1974).

Kamel, H.A., et al., Annual Report to the Office of Naval Research,
under contract no. 5015-2212-50, (Feb. 1975).

Von Fuchs, G., Roy, J.R. and Schrem, E., Hypermatrix Solutiom of
Large Sets of Symmetric Positive-Definite Linear Equations, Comp.
Method Appl. Mech. Eng. 1, pp. 197-216, (1972).

Irons, B.M., A Frontal Solution Program for Finite Element Analysis,
Int. J. Num. Meth. Eng. 2, pp. 5-32, (1970).

Melosh, R.J. and Banford, R.M., Efficient Solution of Load Deflection
Equations, J. Structural Div., ASCE, Vol. 95, No. ST4, pp. 661-676,
(1969) .

